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Phenomenological theory of the kink instability in a slender plasma column
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In this paper we are concerned with the kink instability of a current-carrying plasma column whose
radius a is much smaller than its length L. In the limit a�L, one can consider the column as a thin
filament whose kinking can be adequately described simply by a two dimensional 2D displacement
vector, �x=�x�z,t�; �y=�y�z,t�. Details of the internal structure of the column such as the radial
distribution of the current, density, and axial flow can be lumped into some phenomenological
parameters. This approach is particularly efficient in the problems with nonideal �sheath� boundary
conditions �BC� at the end electrodes, with the finite plasma resistivity, and with a substantial axial
flow. With the sheath BC imposed at one of the endplates, we find instability in the domain well
below the classical Kruskal-Shafranov limit. The presence of an axial flow causes the onset of
rotation of the kink and strong axial “skewness” of the eigenfunction, with the perturbation
amplitude increasing in the flow direction. The limitations of the phenomenological approach are
analyzed and are related to the steepness with which the plasma resistivity increases at the plasma
boundary with vacuum. © 2006 American Institute of Physics. �DOI: 10.1063/1.2180667�
I. INTRODUCTION

The screw pinch is a magnetic configuration that has
been studied for decades, in conjunction with fusion re-
search, astrophysical problems, and basic plasma physics.
One of the most salient features of screw pinches is the de-
velopment of the m=1 global kink mode, which was a sub-
ject of numerous theoretical and experimental studies. We
can refer the reader to the textbook1 and recent
publications,2–5 where further references can also be found.
The role of this instability in the context of Solar Physics has
been discussed in a general survey.6

In this study, we suggest a simplified description of a
pinch with a length L much exceeding its radius a. What is
new in our study compared to the most recent theoretical
analyses of the similar problem4,5 is that we suggest a unified
way for describing such effects as boundary conditions at the
electrodes �including the sheaths�, finite plasma resistivity,
and plasma axial flow. We call our approach “phenomeno-
logical” because it includes some ad hoc assumptions,
which, although having a clear physical meaning, can be
justified only in a qualitative way. This leads to the appear-
ance of some parameters whose exact value can be found
only from fitting the theory predictions and the experimental
data.

Our approach is heavily based on the use of the inequal-
ity a�L. In this case, when becoming unstable, the m=1
mode causes only “gentle” wiggling of the column, so that
the angle formed by the column with its unperturbed direc-
tion remains small. We do not consider here the situation
where the plasma current would exceed the Kruskal-
Shafranov current by a large margin, thereby bringing the
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column to the state of a violent motion and even complete
disruption: we are concerned only with the states that are
moderately overcritical.

We use Cartesian coordinates with the axis z coinciding
with the unperturbed axis of the column and the origin situ-
ated at the lower endplate �Fig. 1�. Occasionally we use also
cylindrical coordinates, with the azimuthal angle � measured
from the axis x. We describe the deformation of the column
as a result of small translation of every cross section in the
x-y plane �Fig. 2�, and neglect any deformation of the cross
section, so that every cross section is merely translated in the
x-y plane.

One can find a justification for this assumption in that,
experimentally, the flux ropes demonstrate a remarkable
cohesiveness.2,3 The theory justification can be found for the
case where viscous and/or gyroviscous effects7 are important
and slow down any deformations of the cross section. The
model of the “rigid” cross sections was successfully used in
the analysis of the mirror stability.8 We do not try here to
provide any deeper assessment of possible deviations from
this approximation. This is yet another sign of the phenom-
enological nature of our approach.

Within this model the shape of the deformed column can
be described by the function

� = ��z, t� , �1�

which is a two-dimensional vector of a transverse displace-
ment of the column with respect to its unperturbed position.
The condition that the deformations are “gentle” can be for-
mulated as

��
� 1. �2�
�

�z
�
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The description in terms of a single 2D vector function is
a key ingredient of our approach: we do not consider the
internal structure of the column, only its overall shape, as
determined by the displacement of circular cross sections in
the x and y directions, Fig. 2.

These assumptions mean that we cannot analyze the in-
ternal dynamics of the column, in particular, internal kinks.
Our model is suitable only for considering global external
kinks. The inner structure of the unperturbed column, e.g.,
the radial distribution of temperature and density, will be
included into our model in the form of lumped phenomeno-
logical coefficients. An approach that we use to implement
this program is described in the subsequent sections.

II. THE GEOMETRY AND BASIC ORDERING

The geometry is illustrated by Fig. 1. With regard to the
radius of the return current conductor b, we assume that it
satisfies an inequality,

a � b . �3�

Under such conditions, b drops out from the analysis.4 �Our
approach can, however, be easily extended to the case where

FIG. 1. The geometry of the problem. The axis y is directed away from the
reader.

FIG. 2. Deformation of the column. The axis z is directed toward the reader.
The solid line represents the initial cross section, whereas the dashed line
shows a displaced cross section. In each cross section z=const, the displace-

ment vector � is the same for all initial points �a rigid displacement�.
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b becomes close to a, but both are still considerably smaller
than L.�

As mentioned in the Introduction, we consider perturba-
tions that can be characterized by the “rigid” displacements
of the “slices” of the plasma column in the x-y planes:

�x = �x�z, t�, �y = �y�z, t� , �4�

Fig. 2. This is a good approximation for a long-wavelength
m=1 mode under condition �3�. The axial magnetic field is
large compared to the azimuthal magnetic field,

B� / Bz � a / L � 1. �5�

This corresponds to the standard scaling for the kink mode.
The plasma pressure is assumed to be small compared to

the magnetic pressure, so that the axial magnetic field is
almost uniform. On the other hand, the finite plasma pressure
does not have any dramatic direct effect on the current-
driven global kinks. So, one can expect that our results will
be at least qualitatively correct, even at ��1.

We start from the simplest model of a perfectly conduct-
ing, initially resting plasma. Later on, we add effects related
to the plasma axial flow and finite plasma resistivity.

The plasma radius a is defined by the condition that the
conductivity outside this radius is negligibly small, and the
external region can be considered as a vacuum. Setting this
boundary is an important step. When deforming the column
in a way indicated by Eq. �4�, we bend the bundle of mag-
netic field lines frozen into the plasma and perturb also an
external axial field, thereby creating a restoring force. This
force increases as the bundle of bent field lines becomes
thicker, i.e., the bending stiffness grows with the bundle ra-
dius a. In particular, this is reflected by the fact that the
“standard” Kruskal-Shafranov criterion9,10 for the critical
current reads as

Iks =
�a2Bzc

L
=

c�

L
, �6�

where c is the speed of light, and � is a flux of the axial
magnetic field through the plasma column cross section. We
use the CGS �Gaussian� system of units. For the perturba-
tions of the type �4� the plasma boundary is not the boundary
that contains, say, 90% of the plasma mass; it is rather the
boundary beyond which the conductivity becomes low. So,
there is some uncertainty in the definition of a, and this is
one of the manifestations of the phenomenological nature of
our model, as outlined in the Introduction. Figure 3 illus-
trates this point with example profiles for density, current
density, and conductivity.

III. THE CASE OF A ZERO FLOW

A. Basic equations

The forces acting on the plasma column can be evalu-
ated by using the energy principle. In a long-thin approxima-
tion, this has been done in a number of papers, in particular,
in Refs. 4, 5, and 11. As a result, one obtains the following

equations of motion:
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�̄
�2�x

� t2 =
Bz

2

2�

�2�x

�z2 −
BzB�

2�a

��y

�z
,

�̄
�2�y

� t2 =
Bz

2

2�

�2�y

�z2 +
BzB�

2�a

��x

�z
. �7�

Here B� is evaluated at the plasma boundary. The definition
of the average density is

�̄ =
2

a2�
0

a

�r dr . �8�

The first term on the right-hand side �rhs� of Eq. �7� is related
to the restoring force associated with the perturbation of the
axial magnetic field both inside and outside the plasma col-
umn. �When no axial current is present, Eq. �7� describes the
shear Alfvén wave propagating along the column.� The sec-
ond term accounts for the destabilizing interaction of the
axial current with the axial magnetic field.

By introducing a complex displacement,

� = �x + i�y , �9�

one can reduce set �7� to a single equation:

�2�

� t2 = vA
2 � �2�

�z2 + ik0
��

�z
	 , �10�

where

k0 =
B�

aBz
, �11�

FIG. 3. A sketch of the current density distribution �solid line�, the density
distribution �dashed line�, and the electrical conductivity distribution �dotted
line�. As the plasma conductivity depends only on the plasma temperature,
the current profile may be broader than the density profile—for a uniform
temperature. The current would drop in the zone where the density is so
small that the standard model of the plasma conductivity does not work. In
the figure, a particular case of a hollow current profile is shown, but our
analysis is applicable to an arbitrary distribution. The parameter a that enters
our equations is determined by the condition that, at r
a, the conductivity is
high enough to make the axial magnetic field to be frozen into the plasma.
Therefore, a depends on the frequency of perturbations. However, for a
steep-enough decrease of the electrical conductivity, a is well defined.
and
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vA 
 Bz / �2��̄ . �12�

The Alfvén velocity has been increased by 21/2 with respect
to the standard definition: this allows one to eliminate the
appearance of additional numerical factors in the further
equations. For the perturbation of the form of exp�−i	t�, one
obtains

−	2� = vA
2 ��� + ik0��� , �13�

where the prime denotes the differentiation over z.
We assume that the electrode situated at z=0 is perfectly

conducting. This yields the following boundary condition
�BC� at z=0:

��z=0 = 0. �14�

On the other hand, at this point, we do not make any assump-
tions about the BC at z=L. In what follows, we implement
various BCs at z=L. It is actually not very difficult to impose
an arbitrary BC at z=0 as well. However, this makes all the
equations longer, without providing any new insights.

The eigenvalue problem described by Eqs. �13� and �14�,
and by some �as yet unspecified� BC at z=L, generally
speaking, does not possess the property of self-adjointness;
in particular, the square of the eigenfrequency 	2 is not nec-
essarily a real number. To identify the cases where the prob-
lem is self-adjoint, it is convenient to introduce a new un-
known function,

�̃ = � exp�ik0z / 2� . �15�

It satisfies the equation

−	2�̃ = vA
2 ��̃� +

k0
2

4
�̃	 , �16�

with real coefficients on the right-hand side �rhs�. Multiply-
ing this equation by �̃* �where the asterisk denotes the com-
plex conjugate�, integrating over z, and accounting for the
boundary condition �14�, one finds

	2�
0

L

��̃�2 dz = vA
2�

0

L � � �̃

�z
�2

dz −
k0

2

4
�

0

L

��̃�2 dz

−���̃ *
� �̃

�z
	�

z=L

. �17�

One sees that the system has a property of being self-adjoint
if, at z=L, one of the following conditions holds: �̃=0 or
��̃/�z=0. If this is the case, the eigenfrequency is automati-
cally either purely real �oscillations� or purely imaginary �ex-
ponential growth or decay�. In other words, in these two
cases one recovers the standard results of the energy
principle.12 The first boundary condition corresponds to a
perfect line tying, whereas the second one can be considered
a boundary condition on the poorly conducting surface �free
sliding of the flux tube over the end surface�. We will discuss
this second boundary condition in more detail in Sec III C.

If formulated in terms of the initial unknown function �,
these boundary conditions read as

�z=L = 0 �18�
and
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�� ��

�z
+

ik0

2
�	�

z=L

= 0. �19�

The solution of Eq. �13� is

� = C1eik1z + C2eik2z, �20�

where

k1,2 = −
k0

2
±�k0

2

4
+

	2

vA
2 . �21�

Imposing the boundary condition of zero displacement at
the surface z=0 �Eq. �14��, we find from Eq. �20� that C1

=−C2=C, i.e.,

� = C�eik1z − eik2z� , �22�

where C is an arbitrary normalization constant. Here we have
not made any assumptions regarding the boundary condition
at the other endplate.

For the normalization C=1/2 that we use throughout this
paper, one has from Eq. �22�,

�x =
1

2
�cos k1z − cos k2z� ,

�y =
1

2
�sin k1z − sin k2z� . �23�

As will become clear later, this representation remains cor-
rect for a much broader set of the input parameters, e.g., for
the case where the axial flow is included. What changes from
case to case are specific expressions for k1 and k2.

B. Line tying at z=L

For the case where there is a perfect line tying at z=L,
i.e., Eq. �18� holds, one has from Eq. �22�,

k1 − k2 =
2n�

L
, �24�

where n=1,2,¼, is an axial mode number. From Eqs. �21�
and �23�, one finds that

	2

vA
2 =

n2�2

L2 −
k0

2

4
. �25�

It is obvious that the most unstable mode corresponds to
n=1. For this mode the critical current is equal to the
Kruskal-Shafranov current IKS �6�. Note that, at the stability
boundary, the eigenfunction is �=C�1−e−ik0z�, i.e., it is a su-
perposition of the helical perturbation �the second term� and
a pure translation perpendicular to the pinch axis �the first
term�. At higher currents, the growth rate is

Im 	 =
�vA

L
� I2

IKS
2 − 1. �26�

In the example that we are considering now where both
electrodes are perfectly conducting, we have, from Eqs. �21�

and �24�, with n=1, that
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k1 =
�

L
−

k0

2
, k2 = −

�

L
−

k0

2
. �27�

From Eq. �23�, we find that the perturbed axis of the
column forms a helix wound over the axisymmetric surface
with a radius

R 
 ��x
2 + �y

2 = sin
�z

L
�28�

�Fig. 4�. For the linear stage of the instability, this result
remains valid for any currents exceeding the critical current.
As k1 and k2 are different, the pitch of the helix, generally
speaking, changes over the length. So, generally speaking, it
is incorrect to describe the perturbation as a perturbation
with a constant pitch.

The next axial mode, n=2, has a critical current equal to
2IKS. One can therefore expect that, at I
2IKS, the structure
of the perturbation will be defined by Eq. �22�; the saturated
amplitude could, of course, be determined only by means of
the nonlinear analysis �which is not a subject of this paper�.

C. Perfect sliding of the flux tube at z=L

Now we consider the other “ideal” boundary condition,
that described by Eq. �19�. We can still use Eq. �22�. When
we impose boundary conditions ��14� at z=0 and �19� at z
=L�, we find

exp i�k1 − k2�L =
2k2 + k0

2k1 + k0
. �29�

Substituting k1,2 from Eq. �21�, we find

exp i�k1 − k2�L = −1, �30�

FIG. 4. The shape of the figure of revolution over which the axis of the
plasma column is wound: �a� Line tying at both z=0 and z=L; the solid
curve corresponds to the case of no axial flow; the dashed curve corresponds
to the axial flow directed from z=0 to z=L, and to an overcritical situation.
�b� Line tying at z=0, no line tying at z=L; the solid curve corresponds to
the case of no flow and to a marginally stable case in the presence of the
flow; the dashed curve corresponds to a somewhat supercritical system in
the presence of the flow. The flow causes the advection of perturbations and
causes a “skewing” of the eigenfunction in the direction of the z=L
electrode.
so that
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k1 − k2 =
n�

L
. �31�

Note that, compared to Eq. �23�, the rhs is by a factor of 2
lower, signifying a lower instability threshold. For the most
unstable mode �n=1�, the critical current is equal to a half the
Kruskal-Shafranov current. For higher currents, the growth
rate is

Im 	 =
�vA

L
� I2

IKS
2 −

1

4
. �32�

The shape of the surface on which the axis of the plasma
column is wound is now

R = sin
�z

2L
, �33�

both for critical and supercritical current �Fig. 4�b��. The
critical current for the n=2 mode is equal to IKS.

We should note that the boundary condition �19� is dif-
ferent from the boundary condition

� ��

�z
�

z=L

= 0 �34�

that one might invoke by the analogy with the oscillation of
the rod with the free end. As condition �34� is of some con-
ceptual interest, we discuss here the dispersion relation that
stems from it.

By substituting solution �22� into Eq. �34� and using Eq.
�21� for k1,2, one obtains

tan�L�k0
2

4
+

	2

vA
2 	 = −

2i

k0
�k0

2

4
+

	2

vA
2 . �35�

This equation has an unstable solution, even at small k0 �k0

��/L�. In the limit of small k0, the solution of Eq. �35� for
the lowest axial mode is

	 
 ±
�vA

2L
�1 −

2ik0L

�2 	 . �36�

Obviously, one of the roots is unstable. Note the definition
�12� of vA.

D. Sheath boundary conditions

1. Sheath current-voltage characteristics

Thus far, we have been considering only the cases where
“ideal” boundary conditions of either perfect line tying or
perfect sliding are imposed at the z=L plane. In this section,
we provide a qualitative phenomenological assessment of
boundary conditions associated with the presence of a Debye
sheath near the z=L electrode.

We use the standard expression13 for the z component of
the current �assuming that axial magnetic field is much
greater than the azimuthal one�:

jz = en�u − vTee
−e�/Te� . �37�

Here u is the ion flow velocity �of order of the ion sound
speed�, n is the particle density, Te is the electron tempera-

ture, and � is the potential at the plasma side of the sheath
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with respect to the plate potential. The plate itself is consid-
ered a good conductor, with the potential on the surface of
the plate constant over the plate surface. In the unperturbed
state, the current through the sheath is sustained by the ex-
ternally applied voltage. Note that the role of the sheath re-
sistance in the problems of the plasma stability has been
recognized many years ago.14,15

When the magnetic field in the plasma is perturbed, then
the perturbation of the z component of the current is gener-
ated. By virtue of Eq. �37�, this leads to the perturbation of
the sheath potential. The latter means that, at the plasma side
of the sheath, the tangential electric field appears, despite the
fact that the underlying surface is perfectly conducting.16 The
presence of the tangential electric field in the plasma means
that the lateral displacements of the plasma column now be-
come possible, i.e., the condition of a zero lateral displace-
ment �perfect line tying� has to be replaced by a more gen-
eral condition, which we derive in the next two subsections.

By perturbing Eq. �37�, we find

�jz = 
1enu
e ��

Te
, �38�

where 
1 is a numerical factor of order one:


1 =
enu − j0

enu
, �39�

and j0 is the unperturbed current density. We assume that j0

does not exceed the ion saturation current, so that 
1�0.

2. Current density perturbation

To formulate the boundary condition, we need to express
�jz in terms of ��z�. As will become clear from the discus-
sion of this section, there are two sources for the axial cur-
rent perturbation: the tilt ���/�z� and the shift ��� of the
column. For linear perturbations, their contributions can be
considered separately and then superposed. Consider first the
tilt of the column, assuming as everywhere else in this paper
that ka�1. For the perturbations with ka�1, one can always
choose a segment of the tube of a length �z that satisfies a
condition a��z�1/k. The tilt of such a segment can be con-
sidered just as a tilt of a thin �a��z� cylindrical rod. If
viewed in the frame attached to the rod, the external mag-
netic field gets tilted and acquires a component perpendicular
to the axis of the rod. The component parallel to the rod axis,
in the linear approximation, remains unchanged.

The appearance of the perpendicular magnetic field
gives rise to the appearance of axial currents. In the case of a
perfectly conducting rod, the structure of the magnetic field
and distribution of the axial current are such as shown in Fig.
5�a�. This figure corresponds to the column tilt in the x-z
plane. At large distances from the rod, the magnetic field
perturbation is uniform and has only the x component:

�B�y�r→� = 0; �B�x�r→� = −Bz
��x

�z
. �40�

As there are no currents outside the rod, �B� can be pre-
sented there as a gradient of some scalar �, �B�=−��, with

2
� satisfying the equation ���=0. The normal component of
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the magnetic field must vanish at the surface of a perfectly
conducting cylinder. The corresponding solution for the mag-
netic field in the cylindrical coordinates reads as

�Br = −Bz
��x

�z
cos ��1 −

a2

r2 	;

�41�

�B� = Bz
��x

�z
sin ��1 +

a2

r2 	 .

As the tangential component of the magnetic field expe-
riences a jump at the surface of the perfectly conducting
cylinder, an axial surface current appears, with the linear
current density �current per unit length of a circumference�
equal to

�Jz =
c

4�
�B��r=a =

c

2�
Bz

��x

�z
sin � . �42�

The current distribution is illustrated in Fig. 5�a�.
In the case of a finite plasma resistivity, this current per-

turbation is spread over a fraction of the column radius. �The
details of the radial distribution of the current density is de-
termined by the radial distribution of the electrical conduc-
tivity.� Then, the current density perturbation can be pre-
sented as �jz=
2�cBz/4�a����x/�z�sin �, where 
2 is a
numerical coefficient of an order of a few that accounts for
the radial extent of the current density distribution. For the
tilt in the y-z plane, the expression for the current perturba-
tion will have the same structure, with �x replaced by �y, and
sin � replaced by −cos �.

Consider now the current perturbation associated with
the shift of the plasma column. This perturbation is a result
of a mere translation in the x-y plane, and the current pertur-
bation �for the displacement in the y direction� is simply
�jz=−��j0/�r��y sin � �and similarly for the displacement in
the x direction, but with replacement of �y by �x, and sin � by
cos ��. As j0�cB�/2�a, and B� is related to Bz by Eq. �11�,
we find that the part of the current perturbation associated
with the displacement �y can be presented as �jz

FIG. 5. The perturbation of the external magnetic field �in the rod frame� for
the tilt in the x-z plane. The initial axial magnetic field Bz is positive; the tilt
is also positive, ��x/�z�0. The left panel corresponds to a perfectly conduct-
ing plasma; the dots �crosses� correspond to the surface current flowing
toward �away from� the observer. The right panel corresponds to an opposite
case of a very small conductivity, when the external field freely penetrates to
the plasma. In the latter case the magnetic field in the laboratory frame
remains unperturbed.
=
3�cBz/4�a�k0�y sin � with 
3 being a coefficient of order 1
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�for a smooth, bell-shaped distribution of the unperturbed
current density�. The total sin �-dependent current perturba-
tion is therefore

�jz =
cBz

4�a
�
2

��x

�z
+ 
3k0�y	sin � . �43�

Likewise, the cos �-dependent current perturbation is

�jz =
cBz

4�a
�−
2

��y

�z
+ 
3k0�x	cos � . �44�

3. The boundary condition

The reaction of the sheath to the current perturbation of
the sin � dependence is illustrated in Fig. 6: by applying the
sheath current-voltage characteristic �38�, one sees that the
“upper” part of the plasma cross section is charged positively
with respect to the “lower” part, giving rise to the electric
field with a general direction antiparallel to the axis y, as
shown in the figure. From Eqs. �38� and �43� one finds

Ey = −

2


1

cTeBz

4�a2e2nu
� ��x

�z
+


3


2
k0�y	 . �45�

Likewise, for the x component of the electric field, one finds
from Eqs. �38� and �44�,

Ex =

2


1

cTeBz

4�a2e2nu
� ��y

�z
−


3


2
k0�x	 . �46�

The tangential electric field gives rise to the drift of the
column imprint over the surface of the endplate:

��

�t
= c

E Ã B

B2 . �47�

Switching to the complex representation �9�, for perturba-
tions proportional to exp�−i	t�, one finds from Eqs.
�45�–�47� the following boundary condition:

��z=L = −�
ivA

	
�� ��

�z
+ ik0


3


2
�	�

z=L

, �48�

FIG. 6. Sheath reaction to the tilt of the column. The tilt occurs in the x
direction, generating the perturbation of the z component of the current; the
direction of the current is indicated by the circles with the dots �toward the
viewer� and crosses �away from the viewer�. The sheath resistance then
leads to the formation of the electric field on the plasma side of the sheath;
this field is directed along the dashed arrows. The presence of the field in the
laboratory frame leads to the plasma drift in the direction of the block arrow.
where
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� =

1

�2
2

cs

u
� c

a	pi
	2

��e �49�

is a dimensionless coefficient characterizing the role of the
sheath resistance. The notation is

cs =�Te

mi
; �e =

8�nTe

Bz
2 . �50�

Again, the presence of the numerical coefficients 
 �which
we cannot evaluate better than within a factor of 2 or so�
points at the phenomenological nature of our model.

The second term on the rhs of Eq. �48�, related to the
displacement of the footpoint, may be affected by a radial
nonuniformity of the initial state of the surface of the end-
plate �e.g., a higher secondary emission coefficient near the
unperturbed axis�. This contribution will, however, have the
same azimuthal structure as the one described by Eqs. �43�
and �44� and can therefore be lumped into the phenomeno-
logical coefficient 
3.

We will consider in more detail a special case where

2=2
3, so that

��z=L = −�
ivA

	
�� ��

�z
+

ik0

2
�	�

z=L

. �48��

The relationship 
2=2
3 is by no means universal, although
it seems to represent reasonably well some of the experi-
ments, e.g., 3. It is of particular interest, since, in the limit of
a very high sheath resistance ��→��, it gives rise to the
boundary condition �19� of the “perfect sliding,” whereas in
the limit of a zero sheath resistance we return to the bound-
ary condition �18� of the perfect line tying. On the other
hand, we understand that the ratio 
2/
3 can be different
from what we have assumed. To provide a glimpse into what
can happen in such a case, we consider also a BC corre-
sponding to a thinner skin layer, where one has 
2�
3, and
the term proportional to 
3 can be completely neglected, so
that

��z=L = −�
ivA

	
� ��

�z
�

z=L

. �51�

In the limit of a high sheath resistivity, ��1, this model
gives rise to the boundary condition �34�.

As the order-of-magnitude estimates used in the deriva-
tion may lead to a sign error, one has to calibrate the sign
from the condition that, in the case of no current, the sheath
resistance should cause the damping of the standing Alfvén
wave. The sign presented in Eqs. �48� and �48�� satisfies this
condition.

We emphasize that we consider only a mode of a global
displacement, where each cross section is simply shifted in
the lateral direction �Fig. 2�. In the case of small-scale per-
turbations, the presence of the sheath boundary condition
may give rise to quite a potent instability driven mostly by
the radial gradient of the electron temperature.17 We do not
consider these small-scale modes, which, if present, can de-
termine the magnitude of the anomalous transport in our

problem.
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Equation �48� is written in such a manner that, for the
typical values of 	 and k, �	��vA/L,k��/L�, the rhs of Eq
�48�, aside from the coefficient �, is of order one. The mean-
ing of the parameter k can be understood in the following
way. Consider the time of the resistive damping of the cur-
rent in the circuit shown in Fig. 7. The sheath resistance is
the ratio of �� to �a2 �jz and, according to Eq. �38�, is
�Te/�a2e2nu, whereas the inductance of the circuit �in the
CGS-Gaussian system of units� is �L/c2. Accordingly, the
inductive decay time is ��a2e2nuL/c2Te. The ratio of the
Alfvén transit time L/vA to this damping time forms the pa-
rameter ���cs/u��c2/a2	pi

2 ���e. For the typical parameters of
the RSX experiment3 �a�2 cm, Te�10 eV, n�1013 cm−3,
B�100 G, u/cs�1�, one has ��15.

The dispersion relation for the boundary condition �48��
is �see Eqs. �21� and �22��

tan�L�k0
2

4
+

	2

vA
2 	 = −

i�vA

	
�k0

2

4
+

	2

vA
2 . �52�

It may have an aperiodic �exponentially growing� root, 	
= i�, with � real. Introducing the dimensionless variables
�denoted by an overcaret� via the equation

k̂0 = k0L, �̂ =
�L

vA
, �53�

one obtains

tan� k̂0
2

4
− �̂2 = −

�

�̂
� k̂0

2

4
− �̂2. �54�

It is easy to see that the unstable root is present if

k0 �
�

L
�55�

�i.e., at I�IKS/2�. In other words, the stability boundary is the
same at any value of the parameter �, starting from very
small values corresponding to an almost perfect line tying.
However, for ��1, the growth rate for k0
2�/L is small; if
��1, the growth rate becomes substantial only at k0

�2�/L. This is illustrated by Fig. 8.
It is also of some interest to see what happens to the

dispersion relation �48� in the case corresponding to the

FIG. 7. The current circuit corresponding to the current pattern shown in
Fig. 6. The current flows in the opposite directions at the opposite sides of
the plasma column �shown in light gray� and is closed through the plasma
sheath �shown in dark gray� and over the surface of the perfectly conducting
electrodes. The only resistive element in this circuit is the sheath.
boundary condition �51�, i.e., to the assumption that the cur-
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rent perturbation at z=L is proportional to ��/�z, without the
term proportional to k0�. In this case the dispersion relation
becomes

tan�L�k0
2

4
+

	2

vA
2 	 = −

i�vA

�	 + �
vAk0

2
	�

k0
2

4
+

	2

vA
2 . �56�

At small � �or k0� one recovers dispersion relation �52�,
whereas at large � one obtains dispersion relation �35�.

IV. EFFECTS OF AN AXIAL FLOW

We now include in our model the parallel plasma flow.
We will characterize it by the velocity v averaged over the
cross section. The way that allows one to obtain the modified
eigenequation is to switch to the frame where the unper-
turbed plasma is at rest. In that frame one recovers Eq. �10�.
After that, one switches back to the laboratory frame, using
the Galilean transformation. This is equivalent to replacing
an operator �/�t by an operator �/�t+v�/�z Equation �10� is,
accordingly, replaced by

� �

� t
+ v

�

�z
	2

� = vA
2 � �2�

�z2 + ik0
��

�z
	 , �57�

where vA is defined by Eq. �12�. For the perturbations of the
exp−i�	t−kz� type, one finds

�	 − kv�2 = vA
2 �k2 + k0k� , �58�

or

k2�1 − M2� + k�k0 + 2M
	

vA
	 −

	2

vA
2 = 0, �59�

where

M =
v
vA

�60�

FIG. 8. The growth rate versus the parameter k0 for a small value of �, �
=0.02. This value corresponds to almost complete line tying, but a weak
instability is present even at k0
2�/L. The dash-dotted line corresponds to
the case of a perfect line tying, when �=0.
is the Alfvén Mach number. From Eq. �59�, we obtain

Downloaded 30 Mar 2006 to 128.115.177.2. Redistribution subject to A
k1,2 =

−2M
	

vA
− k0 ±��2M

	

vA
+ k0	2

+ 4
	2

vA
2 �1 − M2�

2�1 − M2� .

�61�

We will limit ourselves to the analysis for the two
“ideal” boundary conditions �18� or �19�. For the case of the
perfect line tying, substituting k1,2 from Eq. �61� into solu-
tion �22�, and imposing the boundary condition �18�, we find

	2 + 	Mk0vA + vA
2 � k0

2

4
− �n�

L
	2

�1 − M2�2 � = 0. �62�

The instability criterion is

k0 �
2�

L
�1 − M2 �63�

�we assume that v
vA�. In terms of the current, the instabil-
ity criterion reads as

I � IKS
�1 − M2. �64�

The growth rate is

Im 	 =
�vA

L
�1 − M2� I2

IKS
2 − �1 − M2�. �65�

The real frequency is nonzero:

Re 	 = −
vB�

2aBz
= −

�v

L

I

IKS
. �66�

As the mode under consideration is, azimuthally, the m
=1 mode, this frequency is a rotation frequency of the per-
turbation. �To avoid a possible misunderstanding, we empha-
size that this is an “orbital” motion, in which the center of
the every slice of the plasma column rotates around the z
axis; this is not a “proper” rotation of the unperturbed
plasma.� The rotation frequency does not vary along the col-
umn length. For v positive �directed from z=0 to z=L�, the
helix screws into the z=L electrode, independently of the
direction of the z component of the magnetic field. Note that
the frequency is nonzero at the stability margin. When we go
beyond the stability margin, the rotation frequency increases.

Beyond the stability margin, the axis of the plasma col-
umn is wound over the surface that is different from �28�.
Now it is

R 
 ��x
2 + �y

2 = �exp
zv Im 	

vA
2 − v2 	�sin

�z

L
	 . �67�

Note that this surface does not possess symmetry with re-
spect to the z=L/2 plane. The perturbation is “skewed” in the
direction of flow �Fig. 4�a�, dashed line�.

Consider now the stability margin in the case of the
boundary condition �19�, i.e., �→�. An inspection of Eq.
�29� shows that the stability boundary corresponds to

k0 =
�

L
�1 − M2, �68�
or
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Icrit

IKS
=

�1 − M2

2
. �69�

The parameters k1 and k2 that enter the eigenfunction �22�
are �at the stability boundary�

k1 =
k0

2 � 1
�1 − M2

− 1	 ; k2 = −
k0

2 � 1
�1 − M2

+ 1	 . �70�

The rotation frequency of the mode is

	 = −
�v
L

�1 − M2, �71�

with the helix screwing into the z=L electrode. The surface
over which the axis of the perturbed plasma column is
wound is still the same as �33�.

We do not present here a lengthy analysis of Eq. �29� for
supercritical currents and just note that, in the supercritical
domain with the flow present, the surface �33� gets skewed in
the direction of the flow, as sketched in Fig. 4�b�, dashed
line.

V. THE EFFECTS OF BULK RESISTIVITY

Now we switch to the effects of the bulk plasma resis-
tivity. When bending of the plasma column occurs, the ini-
tially uniform axial magnetic field is perturbed, generating
the restoring force, which, in the limit of a perfect conduc-
tivity, is described by the first term on the rhs of Eq. �58�. In
the case of a finite conductivity, the currents and magnetic
field perturbations induced by the motion of the column be-
come smaller due to resistive effects. This leads to a decrease
of the restoring force. Finally, in the limit of a very low
conductivity, the axial magnetic field is not perturbed at all
�remains uniform� and the restoring force vanishes.

To include these effects in the phenomenological model,
one can use the induction equation for the perturbation �B of
the initially axial magnetic field. One has

�Ḃ = Bz
��

�z
−

�B

�r
. �72�

Here we introduced the resistive time �r for a phenomeno-
logical characterization of the resistive dissipation of �B:

�r =
2�a2�

c2 , �73�

where � is the parallel electrical conductivity of the plasma.
�The current generated by the tilts of the column is an axial
current; see Eq. �42�.� Note that, in the spirit of the phenom-
enological approach, we do not solve the problem of the
magnetic field diffusion, just introduce a characteristic time
�r. For the perturbations of the form of exp�−i	t+ikz� one
can rewrite Eq. �72� as

�B =
i�	 − kv��r

i�	 − kv��r − 1
ikBz� . �74�

The restoring force caused by the deformation of the axial
magnetic field is proportional to �B. Accordingly, one has to

replace the first term on the rhs of Eq. �58� by
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i�	 − kv��r

i�	 − kv��r − 1
k2vA

2 � . �75�

Now we consider the last term in Eq. �58�, which de-
scribes the interaction of the tilted current with the external
magnetic field. Here the situation is quite different, because
the axial current is sustained by the applied voltage and does
not decay due to resistive effects. When the filament be-
comes wavy, the current just follows the filament. Consider
as an example the case where the electrical conductivity is so
low that the axial magnetic field is not perturbed at all �re-
mains uniform�. Then the force acting per unit length of the
column can be presented simply as

Bz

c
�I Ã ez� =

BzI

c
�ex

��y

�z
− ey

��x

�z
	 , �76�

where I is a vector collinear to the tilted axis of the column,
and �I� equals the unperturbed current; ex,y,z are the unit vec-
tors parallel to the coordinate axes. This is exactly the same
force as in Eq. �7�, which corresponds to the perfect conduc-
tivity. We see that, in the limiting cases of very high and very
low conductivity, the force term associated with the axial
current remains the same. This is not a coincidence: one can
show that, in the intermediate case of a finite conductivity,
the force still remains the same as in the two limiting cases.
This can be proven by integrating the Maxwell stress tensor
over the surface situated at a distance r such that a�r�1/k,
where the magnetic field is just a superposition of a uniform
axial field and the field of a tilted current filament.

Collecting Eqs. �58�, �75�, and �76�, one finds the fol-
lowing model equation corresponding to the finite plasma
resistivity:

�	 − kv�2 = vA
2 � i�	 − kv��r

i�	 − kv��r − 1
k2 + k0k	 . �77�

Note that, for a nonzero flow velocity, the equation for k
becomes of the third order, thereby requiring the imposition
of one more boundary condition. This would be the condition
that �B is zero at z=0 �the finite-conductivity fluid cannot
carry a current sheath, and enters the volume in question
without any initial perturbation of the magnetic field�. Imple-
menting this boundary condition in the general case is quite
an onerous task. The boundary condition at z=L also be-
comes quite complex.

The dimensionless parameter that characterizes the role
of resistive effects is

� =
�vA�r

L
�78�

�this is a product of the characteristic frequency and the re-
sistive time�. For the parameters of the RSX experiment �L
�100 cm, a�2 cm, Te�10 eV, n�1013 cm−3, B�100 G�,
one has ��6.

The main role of the resistive effects is related to the
decrease of the critical current. Equation �79� below shows
that slow-enough perturbations in a nonflowing plasma
would become unstable, even at the current substantially

lower than the KS current. In other words, if resistive modes
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are considered, a “hard” stability limit is replaced by a
gradual emergence of the slow modes, which begin to show
up at relatively low currents. The addition of the flow, how-
ever, leads to at least partial stabilization of these modes. All
these effects are encapsulated in relatively simple �alge-
braic!� equations of our phenomenological model.

To illustrate the effect of a finite resistivity, let us con-
sider the case where the parameter � �Eq. �77�� is very small
�small �r�. We assume also that the flow is absent, v=0. In
this case there appears a possibility of the formation of a
continuous spectrum of unstable modes, even at the current
significantly less than the KS current. Indeed, in the limit of
a zero �r, Eq. �77� yields

	2 = vA
2 k0k. �79�

Clearly, for the “negative” handedness of the perturbation
�such that k0k
0�, perturbations are unstable, with the
growth rate

Im 	 = vA
��k0k� . �80�

The nature of the mode is as follows. At a high plasma
resistivity, the strong axial magnetic field is not frozen into
the plasma anymore, and a helical perturbation of the appro-
priate handedness experiences an imbalanced radial force
that leads to its growth.

In order to be able to form localized perturbations insen-
sitive to the boundary conditions, we have to assume that k
��/L. Still, the growth rate must be slow enough, so that the
condition Im 	�r�1 holds. These two constraints are com-
patible with each other, provided the condition

�2 I

IKS
� 1 �81�

is satisfied. In other words, at a small enough plasma current
the instability can be present at even relatively high values of
� �relatively high conductivity�. However, the instability in
this case is quite slow, with the e-folding time longer than
the resistive time. Therefore, these perturbations will be sen-
sitive to the presence of the plasma flow and will be advected
toward the z=L endplate. At ��1, this requires a relatively
low flow velocity,

v �
�rL

�
, �82�

i.e., M�1/�.
An interesting feature of the situation with ��1 is the

fact that the perturbation will have a substantial real fre-
quency, even if there is no flow.

VI. DISCUSSION

The phenomenological approach developed in our paper
allows one to study the stability of a long-thin plasma col-
umn with a number of effects accounted for in a unified
manner. Those effects include the presence of the axial

boundaries, axial plasma flow, sheath resistance, and the bulk
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plasma resistance. We have presented several examples of
incorporating some of these effects into an actual analysis.

An important assumption of our model is that there is a
boundary beyond which the plasma electrical conductivity
essentially vanishes, so that the column is surrounded by a
vacuum. We, therefore, will not be able to consider the situ-
ations where there is a conducting medium outside the col-
umn. One more constraint stems from our assumption that
the axial wavelength of the perturbation is much longer than
the column radius.

With these assumptions made, the description of the col-
umn deformations becomes quite simple: we characterize
them just by rigid lateral displacements of the plasma slices
�Eq. �4��. �With that, we of course, abandon any attempts of
describing internal kinks; on the other hand, description of
the external kink becomes quite efficient.�

The theory developed in this paper is linear. Strictly
speaking, this does not allow us to consider the plasma dy-
namics at the axial current substantially exceeding the
threshold. However, the general structure of the perturbation
determined by a linear eigenfunction should be quite a robust
entity and thereby gives a hint on the shape of the column in
the nonlinear regime. A weakly nonlinear theory of the type
suggested in Ref. 11, but with the effects of the plasma flow
and sheath resistance included, should be feasible.
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